Free and cyclic canonical $\bf{(m,n)-}$ ary hypermodules
نویسندگان
چکیده
منابع مشابه
Canonical (m,n)−ary hypermodules over Krasner (m,n)−ary hyperrings
The aim of this research work is to define and characterize a new class of n-ary multialgebra that may be called canonical (m, n)&minus hypermodules. These are a generalization of canonical n-ary hypergroups, that is a generalization of hypermodules in the sense of canonical and a subclasses of (m, n)&minusary hypermodules. In addition, three isomorphism theorems of module theory and canonical ...
متن کاملSTRONGLY TRANSITIVE GEOMETRIC SPACES ASSOCIATED WITH (m,n)-ARY HYPERMODULES
In this paper, we define the strongly compatible relation ε on the (m,n)ary hypermodule M, so that the quotient (M/ε∗, h/ε∗) is an (m,n)-ary module over the fundamental (m,n)-ary ring (R/Γ∗, f/Γ∗, g/Γ∗). Also, we determine a family P (M) of subsets of an (m,n)-ary hypermodule M and we give a sufficient condition such that the geometric space (M,P (M)) is strongly transitive. Mathematics Subject...
متن کاملOn exact category of $(m, n)$-ary hypermodules
We introduce and study category of $(m, n)$-ary hypermodules as a generalization of the category of $(m, n)$-modules as well as the category of classical modules. Also, we study various kinds of morphisms. Especially, we characterize monomorphisms and epimorphisms in this category. We will proceed to study the fundamental relation on $(m, n)$-hypermodules, as an important tool in the study of a...
متن کاملCanonical Calculi with (n, k)-ary Quantifiers
Propositional canonical Gentzen-type systems, introduced in [2], are systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a connective is introduced and no other connective is mentioned. [2] provides a constructive coherence criterion for the non-triviality of such systems and shows that a system of this kind admits cut...
متن کاملBalancing Cyclic R-ary Gray Codes II
New cyclic n-digit Gray codes are constructed over {0, 1, . . . , R − 1} for all R ≥ 2, n ≥ 3. These codes have the property that the distribution of digit changes (transition counts) between two successive elements is close to uniform. For R = 2, the construction and proof are simpler than earlier balanced cyclic binary Gray codes. For R ≥ 3 and n ≥ 2, every transition count is within 2 of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tamkang Journal of Mathematics
سال: 2011
ISSN: 2073-9826,0049-2930
DOI: 10.5556/j.tkjm.42.2011.870.105-118